教案的实施需要教师的耐心与细致,以确保每位学生都能受益,写教案时,我们应关注教学方法的多样性,以激发学生的学习兴趣,以下是述职范文网小编精心为您推荐的北师大版六年级下数学教案5篇,供大家参考。
北师大版六年级下数学教案篇1
教学目标:
1、在具体情境中,通过画一画的活动,初步认识正比例图象。
2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。
3、利用正比例关系,解决生活中的一些简单问题。
教学重点:
会在方格纸上描出成正比例的量所对应的点,并认识到成正比例关系的两个量的图象特点。
教学难点:
利用正比例关系,解决生活中的一些简单问题。
教学准备:
多媒体课件
教学过程:
一、复习
师:通过上节课的学习,同学们能根据正比例的特征来判断两个变量是否成正比例。首先,请同学们回忆一下,正比例要满足哪两个条件?
生:要满足两个条件:1、两种量是相关联的量,一种量随着另一种量的增加而增加、减少而减少;2、两种量相对应的比值不变。
师:请同学们在思考一下:y=5x,y和x成正比例吗?为什么?
生:成正比例,因为y和x是两种相关联的量,随着x的变化,y也在不断变化,y和x的比值始终等于5.所以y和x成正比例。
师:看来对于成正比例的量之间的关系,同学们已经掌握,下面我们再思考一个问题:y和x成正比例,y是x的5倍,它们之间的关系能通过图画的到吗?这就是我们这节课要学习的内容。(教师板书课题:画一画)
(设计意图:复习上节课正比例的有关知识,导入本课。)
二、动手画图,理解含义。
填表,说一说表中两个量的关系。
一个数 0 1 2 3 4 5 6 7 8 9 10
这个数的5倍
(1)学生填表。
(2)学生汇报。
(3)谁能说一说这两个量的关系。
这两个量在不断变化,并且一个数增大,它地5倍也不断增大,但他们的比值不变。所以这两个变量成正比例关系。
(设计意图:通过本环节,带领学生看懂图,明确图上横轴、纵轴分别表示什么,明确各点所表示的含义。为下一步在表格上描点,扫清障碍。)
三、试一试
1、在下图中描点,表示第20页两个表格中的数量关系。
2、思考:连接各点,你发现了什么?
生:所有的点在都在同一条直线上。
(设计意图:学生会很形象的看到所有点都在同一条直线上,进一步体会当两个变量成正比例关系时,所绘成的图是一条直线。)
四、练一练
1、圆的半径和面积成正比例关系吗?为什么?
师:因为圆的.面积和半径的比值不是一个常数。
师:请同学们观察课本上的图,看一看不成正比例的两个量所形成的的图形是不是一条直线?
(设计意图:从反方进一步证明成不成正比例的两个量,形成的图像不是一条直线。通过对比方式,再次验证结论。)
2、乘船的人数与所付船费为:(数据见书上)
(1)将书上的图补充完整。
(2)说说哪个量没有变?
(3)乘船人数与船费有什么关系?
(4)连接各点,你发现了什么?
3、回答下列问题
(1)圆的周长与直径成正比例吗?为什么?
(2)根据右图,先估计圆的周长,再实际计算。
(3)直径为5厘米的圆的周长估计值为( ),实际计算值为( )。
(4)直径为15厘米的圆的周长估计值为( ),实际计算值为( )。
4、把下表填写完整。试着在第一题的图上描点,并连接各点,你发现了什么?(表格见书上)
(设计意图:通过以上练习,巩固所学。)
北师大版六年级下数学教案篇2
教学目标:
1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、渗透转化思想,培养学生的自主探索意识。
教学重点:
掌握圆柱体积的计算公式。
教学难点:
灵活应用圆柱的体积公式解决实际问题。
教学过程:
一、复习
1、复习圆柱体积的推导过程
长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即v=sh。
2、复习长方体、正方体的体积公式后,让学生独立完成练习三第6题求体积部分,并指名板演。
二、解决实际问题
1、练习三第4题。
学生独立练习,强调选取有用信息,培养认真审题习惯。
2、练习三第5题。
(1)指导学生变换公式:因为v=sh,所以h=v÷s。也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3、练习三第10题。
指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。
4、练习三第8题。
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4、练习三第9题
(1)学生独立审题后完成。
评讲:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式v=sh)
5、练习三第11题。
此题既可以用外圆柱体积减内圆柱的体积,也可以用圆环的面积乘高。
三、布置作业
完成练习中未做完的习题
教学反思
第五课时特别关注
练习三第4题,在教学中必须应该特别关注。
关注理由:
1、有多余条件,是培养学生收集有用信息的契机。
这道题中出现两个圆柱体的高,分别是花坛的高0.8米和花坛里面填土的高0 .5米。学生该如何合理做出选择呢,关键要通过问题来思考。因为问题是求“花坛中共需要填土多少方”,所以应该选用“填土的高度是0.5米”这条数学信息。
在课堂中,我还要求学生思考,如果要用上“0.8米”这个条件下,可以怎么改变问题。有的学生说“可以问花坛的体积是多少立方米”,还有的同学说“可以求花坛中空间的体积是多少立方米”。通过这样的训练,能够有效培养学生收集、处理信息的能力,同时提升他们综合分析问题的能力。
2、有容易忽视的条件,是培养学生认真审题的契机。
一般习题中的数据是用阿拉伯数字呈现,可这道题的问题是求“两个花坛中共需要填土多少方”,这里隐含着一个极易被学生忽视的数据“两个”。其实,配套的插图中也明显绘制出了2个花坛,但在做题中许多学生仍旧会出错。所以,应抓住此题,培养学生良好审题的习惯。如在做这类习题时,建议首先将单位圈出来,以确保列式时单位统一。还可以将问题划横线,以提醒自己将生活问题转化为数学问题等。
学生巧解
——巧求削去部分的体积
今天,全班同学做这样一题:一块长方体木块体积是20立方分米,它的底面为正方形,边长为2分米。现在,将它削成一个的`圆柱体,求削去的部分是多少立方分米?
我因为做得既对又快,最终获得全班第一名的成绩。通过对比,我发现自己的方法比同学们巧妙。
同学们的解法是先求长方体的高(即圆柱体的高),用20÷(2×2)=5分米,然后求圆柱体的体积,列式为3.14×(2÷2)2×5=15.7立方分米,最后求削去部分的体积是20—15.7=4.3平方分米。
而我在做这一题时,想起上学期在正方形中画的圆,圆的面积占正方形面积的157/200的结论。因为直柱体的体积都可以写成底面直径乘高,而长方体和削成的圆柱体高相等,所以削成的圆柱体体积也应该是长方体体积的157/200。所以直接用20×(1—157/200)也等于4.3立方分米。
北师大版六年级下数学教案篇3
复习内容:
教材练习四的内容。
复习目标:
1.进一步掌握三种常见的统计图,了解它们各自的特点,能根据实际情况选择合适的统计图。
2.能根据统计图中的数据信息提出并解答简单的问题。
3.能对统计图中与现实生活相关的数据作出合理的解释,能选择合适的统计图描述并解决现实生活中的简单问题。
教学重点:
能根据统计图中的数据信息提出并解答简单的问题。
教学难点:
能选择合适的统计图描述并解决现实生活中的简单问题。
教学准备:
教学课件。
教学过程:
学生活动
(二次备课)
一、知识梳理
(一)谈话导入。
师:同学们,第五单元《数据处理》的知识我们都已经学完。关于这部分内容,你学会了什么,还有什么疑问?这节课我们一起来回顾并解决问题。
(二)梳理反馈,建构网络。
组织学生回顾本单元知识,在小组内交流汇总后进行汇报。
1.扇形统计图:用整个圆表示总数,用圆内大小不同的扇形表示各部分所占总数的百分比。它可以清楚地表示出各部分数量和总数量之间的关系。
2.统计图的选择:根据它们各自的特点结合实际需求。
扇形统计图:可以清楚表示各部分数量所占总数的百分比。
条形统计图:可以清楚描述各部分的数量的多少。
折线统计图:可以清楚反映事物的变化情况。
3.数据的整理:可以分段整理数据,填写统计表。
4.复式折线统计图:对两组数据进行比较时,可以把两组数据进行分段整理,然后绘制出复式折线统计图,能清楚地看出数据分布状况及集中趋势。
二、针对练习
1.完成教材练习四第1题。
(1)组织学生读题,理解题意。
(2)思考:根据题目要求想一想选择什么样的统计图较为合适?
生:因为要表示去年凉鞋销售量的变化情况,所以应选择折线统计图更合适。
(3)学生独立完成折线统计图。
(4)展示学生完成的统计图。
2.完成教材练习四第2题。
(1)让学生读题后说一说找到的数学信息。
生1:这是扇形统计图,在这道题中整个圆表示奇思家12月生活总支出;
生2:奇思家12月生活支出有服装、文化、食品、水电气、赡养老人和其他。
(2)让学生思考:扇形统计图主要表现什么?统计图中的每个百分数的意义是什么?
(3)学生独立计算,完成后集体订正。
3.完成教材练习四第4题。
学生独立完成。老师提示:在分段统计时可以用画“正”字的方法统计,数据不重复不漏掉。
三、巩固练习
1.完成教材练习四第3题。
指名让学生回答根据下面情况分别用哪种统计图表示比较合适,并说明理由。
2.完成教材练习四第5题。
(1)教师给出本班和邻班10名男生的60
m跑成绩。
(2)让学生说说如何比较。
(3)学生自己计算、画图完成后汇报。
四、课堂总结
通过这节课的整理和复习,你有什么收获?
五、作业布置
教材练习四第6题。
板书设计
练习四
1.条形统计图、折线统计图、扇形统计图的特点和适用范围
2.整理数据:分段
3.绘制统计图时需要注意的事项
教学反思
成功之处:本节课设计要求学生独立思考,鼓励学生联系生活实际创造性地解决问题,让学生把思考过程、结果说出来,有利于培养学生的思维能力,拓宽学生的思维空间。
不足之处:可能有些学生从统计图获取的信息中所提出的问题难度大,将简单知识复杂化了,不适于学困生。
教学建议:在教学中提问要有针对性,让学生自由支配的时间要多一些,大胆让学生根据信息提出数学问题。
北师大版六年级下数学教案篇4
教材简析:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。例4是圆柱的体计算公式的直接运用,是圆柱体积计算的基本,但这题又给学生设置了单位不统一的障碍,让学生在直接应用公式计算的同时注意计量单位的统一。例5是圆柱体积计算公式的扩展练习,意在让学生加深理解容积的概念,使之明确求水桶的容积就是求水桶内部的体积。例5除了在意义上扩展外,公式的运用中也有加深,水桶的底面积没有直接给出,因此要先求出水桶的底面积,再求出水桶的体积。
教学目的:
1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4.借助实物演示,培养学生抽象、概括的思维能力。
教 具:圆柱体、长方体彩图各一张,圆柱的体积公式演示教具。
学 具:小刀,用土豆做成的一个圆柱体。
教学过程:
一、复习铺垫
1.说说长方体的体积计算公式,正方体的体积计算公式,把这两个体积公式统一成一个又是怎样的?这个公式计算体积的物体有什么特征?
2.指出圆柱各部分的名称。说一说圆柱有多少条高?有几个底面?每个1自由的面积如何计算?这个计算公式是怎样推导出来的?
二、设疑揭题
我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
[评析:复习抓住教学重点,瞄准学习新知识所必须的旧知识,、旧方法进行铺垫,沟通了知识之间的内在联系,衔接自然。新课引入教师引出了学习新知识的思路,导出了解决问题的方法,从而调动了学生学习的积极性,激发了学生探求新知识的欲望。
三、新课教学
1.探究推导圆柱的体积计算公式。
(l)自学第43页第二自然段,然后按照书中要求,两人一组将于中的圆柱切开拼一拼,再说一说你拼成三个近似什么形状的立方体?
(2)请学生演示教具,学生边演示边讲解切割拼合过程。
(3)根据学生讲解,出示圆柱和长方体的彩图。
(4)学生观察两个立体图,找出两图之间有哪些部分是相等的?
(5)依据长方体的体积计算公式推导出圆柱的体积计算公式。板书:v=sh
(6)要用这个公式计算圆柱的体积必须知道什么条件?
[评析:在教学中充分让学生动手、动脑、动口,让学生在操作中感知,在观察中理解,在比较中归纳。教师的导、放、扶层次分明,充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的.推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力]
2.教学例4
(1)出示例4。
(2)默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?谁愿意试一试?
(3)请一名同学板演,其余同学在作业本上做。
(4)板演的同学讲解自己的解题方法,说一说在做这道题的过程中遇到了什么问题,是怎样解决的?
(5)教师归纳学生所用的解题方法。强调在解题的过程中要注意单位统一。
3.教学例5
(1)请同学们想一想,如果已知圆柱底面的半径r t和高h,怎样求圆柱的体积?请学生自学并填写第44页第一自然段的空白部分。
(2)出示例5,指名读题。请同学们思考解题方法。
(3)请学生讲解题思路讨论、归纳统一的解题方法。
(4)让学生按讨论的方法做例5。
(5)教师评讲、总结方法。
(6)学生讨论。比较例4、例5有哪些相同和不同点。
[评析:引导学生通过实际操作,由观察、分析、比较,再进行计算,达到运用新知、巩固新知的目的。]
四、新知应用
1.做第44页下面做一做的题目。两人板演,其余在自己作业本主做,做完后及时反馈练习中出现的错误,并加以评讲。
2.刚才同学们在做例4时,还有下面几种解法,请大家仔细思考,这些解法是对还是错?试说明理由。
(1)v=sh=5o2.1=105
答:它的体积是105立方厘米
(2)2.l米=210厘米
v=sh=50210=10500
答:它的体积是10500立方厘米。
(3)50立方厘米=0.5立方米
v=sh=0.52.1=1.05(立方米)
答:它的体积是l.05立方米。
(4)50平方厘米=0.005平方米。
v=0。00521=0.01051
答:它的体积是0.01051(立方米)。
五、全课总结
问:这节课里我们学到了哪些知识?根据学生回答教师总结。
六、学生作业
练习十一的第l 、2题。
[总结实:本节课的教学体现了三个主要特点:一、利用迁移规律引入新课,为学生创设良好的学习情境;二、遵循学生的认知规律,引导学生操作、观察、思考、说理,调动多种感观参与学习;三、正确处理两主关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。总之,本节课教师引导得法,学生学得灵活,体现了重在思,贵在导,导思结合的原则,体现了教是为了不教,学会是为了会学的素质教育思想]
北师大版六年级下数学教案篇5
教学内容:
教科书第50、51页的内容,做一做,练习十一第4-6题。
教学目标:
1、掌握比的基本性质,能根据比的基本性质化简比。
2、联系商不变的性质和分数的基本性质迁移到比的基本性质。
教学重点:
理解比的基本性质。
教学难点:
能应用比的基本性质化简比。
教学过程:
一、激趣定标
1、20÷5=(20×10)÷( × )=( )
想一想:什么叫商不变的规律?什么叫分数的基本性质?
3、我们学过了商不变的规律,分数的基本性质,联系比和除法、分数的关系,想一想:在比中有什么样的规律呢?这节课我们就来研究这方面的问题。
二、自学互动,适时点拨
?活动一】比的基本性质
学习方式:小组合作、汇报交流
学习任务
1、启发诱导,发现问题:6:8和12:16这两个比不同,可是它们的比值却相同,这里面有什么规律呢?。
6:8=6÷8=6/8=3/412:16=12÷16=12/16=3/4
2、观察比较,发现规律。
(1)利用比和除法的关系来研究比中的规律。(商不变的规律)
(2)利用比和分数的关系来研究比中的规律。
3、归纳总结,概括规律。
(1)总结:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
(2)追问:这里“相同的数”为什么要强调0除外呢?
?活动二】化简比
学习方式:尝试训练、汇报交流
学习任务
1、认识最简单的整数比。
(1)提问:谁知道什么样的比可以称作是最简单的整数比?
(2)归纳:最简单的整数比要满足两个条件,一是比的前项和后项都是整数,二是比的前项和后项的公因数只有1。
(3)指出几个最简单的整数比。
2、运用性质,掌握化简比的方法。
(1)分别写出这两面联合国国旗长和宽的比。
(2)思考:这两个比是最简单的整数比吗?为什么?(前项和后项除了公因数1还有其他的公因数。)
(3)尝试化简。
(4)汇报交流:只要把比的前、后项除以它们的公因数。
(5)想一想:这两个比化简后结果相同,说明了什么?(这两面旗的大小不同,形状相同。
(6)出示例题,组织交流
①乘分母的最小公倍数:1/6:2/9=(1/6×18):(2/9×18)=3:4
②前后项先化成整数,再化简:0.75:2=(0.75×100):(2×100)=75:200=3:8
③用分数除法的方法计算:1/6÷2/9=1/6×2/9=3/4
(7)小结:如果一个比的前、后项是分数的,就把前后项同时乘分母的最小公倍数;如果一个比的前、后项是小数的,先把它们都化成整数,再化简。
三、达标测评
1.完成课本第51页的“做一做”,集体订正。
2、完成课本第52页练习十一的第2、4、5、6题。
四、课堂小结
这节课我们学习了什么?你有什么收获?
北师大版六年级下数学教案5篇相关文章: