通过教案的实施,教师能够培养学生的自信心,鼓励他们在学习中勇于探索,为了提升教学质量,教师需要定期反思并优化自己之前编写的教案,,下面是述职范文网小编为您分享的数学五年级下教案通用8篇,感谢您的参阅。
数学五年级下教案篇1
教学目标:
认知目标:复习用字母表示数。解学过的简易方程列方程解简单的文字题和应用题。
能力目标:通过总复习,把所学的方程知识进一步系统化,以此培养学生的归 纳、总结的能力。学生根据自己的理解列出形式不同的方程,以养成灵活解题的能力, 进一步提高解决问题的能力。
情感目标:
通过经历复习的过程,在互动交流、共同梳理中,体验合作交流的情感以及享受成功的喜悦。
教学重点:
列方程解文字题和应用题。
教学难点:
列方程解应用题。
教学过程:
一、开门见山,揭示课题
今天我们继续复习方程与代数的知识,先回忆一下上节课的内容。 今天我们将利用这些知识,列方程解文字题和应用题。
二、复习与整理
(一)列方程解文字题
(1)4.2比一个数的4倍多1,求这个数。
(2)某数比4.2的4倍多1,求这个数。
1.学生自己尝试解方程
2.观察比较区别。
3.小结:要看清是一倍数还是几倍数。
师:列方程解文字题我们要怎么做? 首先通过读题,找到未知量和已知量,并用字母和含有字母的式子表示未知量;接着找出未知量和已知量之间的等量关系,并列出方程;随后解方程并检验。
4.巩固练习(写出设句和方程,不解方程)
(1)2.6与4.5的积加上一个数的3倍,和是13.8。求这个数。
(2)一个数与3的和的4倍,正好等于这个数的6倍。求这个数。
(3)一个数的5倍比14与5的积少14,这个数是多少?
(4)甲、乙两数之和是2.8,甲数比乙数的`2倍少1.4,求乙数。
小结:解方程一定要养成检验的习惯,正确运用关系式求解.
(二)列方程解应用题
(1)地球绕太阳一周要用365天,比水星绕太阳一周的时间的4倍还多13天。水星绕太阳一周要用多少天? (体会文字题和应用题之间的练习,通过辨析、比较,进一步分析和掌握解方程的一般步骤。)
(2)文具店里,一支钢笔的售价比一支铅笔贵10.5元,是铅笔售价的8倍,钢笔和铅笔的售价各是多少元? (要注意不同的等量关系可以列出不同的方程。)
(3)儿童节时,老师向学生发放礼品,如果每个班发20份礼品,就会多出130份;如果每个班发25份礼品,则刚好分完,学校一共有几个班级?共准备了几份礼品? (要注意选择合理的未知量设x)
小结:具体过程与列方程解文字题的步骤相似,但是由于题目的灵活性更高,根据题意,可能找到很多的等量关系,也就可以列出各种不同的方程。因此,列方程解应用题更灵活。
?通过学生的分析、回顾和整理,充分表现出列方程解应用题的优势,进一步体会列方程解应用题的好处。从而通过成功的体验,让学生自愿自发的喜欢用方程解答较复杂的应用题。】
三、本课小结
在列方程解文字题和应用题时,要根据题意,找准等量关系,解决问题,更要注重检验。
四、课后作业
教材75页第五题和第六题。
数学五年级下教案篇2
【教学目标】
1.知识与技能
(1)认识并掌握正方体的特征,理解长方体与正方体之间的关系。
(2)培养学生的观察操作能力,抽象概括能力,发展空间观念。
2.过程与方法
(1)通过观察实物和动手操作等教学活动,使学生掌握正方体的特征。
(2)通过小组合作学习,探究长方体与正方体的关系。
3.情感态度与价值观
(1)体验合作探究的乐趣,培养学生的合作意识。
(2)感受数学与生活的联系,发展学生的思维。
【教学重点】
正方体的特征及长、正方体的异同点。
?教学难点】
建立立体图形的概念,形成表象。
【教学方法】
启发式教学、自主探索、合作交流、讨论法、讲解法。
【课前准备】
多媒体课件
【课时安排】
1课时
【教学过程】
(一)复习旧知,导入新课。
1、师:上节课我们学习了长方体的特点,请你回忆一下,回答下面的问题。(课件第2张)
(1)长方体有(6)个面,都是(长方)形,也可能有(2)个相对的面是正方形。长方体相对的面(完全相同)。
(2)长方体有(12)条棱,相对的棱(长度相等)。
(3)长方体有(8)个顶点。
在我们的身边,除了许多长方体的物体,还有许多是正方体。(课件第3张)
比如:骰子、魔方、沙包、积木、礼品盒等,这些都是正方体。
你还能说出生活中的哪些物体是正方体呢?
生举例说。
【设计意图】
从学生熟悉的生活中的事物引入,使学生感觉到数学与生活的紧密联系,感受到生活中处处有数学。
2、你知道它有什么特征吗?这节课我们就来学习和研究正方体的特征,并板书课题。
(二)探究新知
1.仔细观察课前准备好的正方体,你发现正方体有什么特点?
(1)小组合作:
拿一个正方体的物品来观察,想一想它有什么特点?
(2)汇报交流:(课件第6张)
生1:正方体的6个面都是正方形,并且完全相同。
生2:正方体的12条棱长度都相等。
2.总结正方体的特点。(课件第7张)
正方体有6个面,每个面都是正方形,这6个面完全相同。
正方体有12条棱,所有的棱长度都相等。
正方体有8个顶点。
正方体是由6个完全相同的正方形组成的立体图形,所有的棱长度相等。
【设计意图】
用小组讨论的方式,让学生从观察实物的过程中发现正方体的特点,培养学生的观察能力、思维能力。
3.小组讨论:长方体和正方体的异同点。
拿出一个长方体和一个正方体,观察一下:正方体和长方体有什么相同点,有什么不同点?(课件第8、9张)
生1:长方体和正方体都有6个面,12条棱,8个顶点。
生2:长方体的6个面一般是长方形,正方体的6个面都是正方形。
生3:长方体相对的棱长度相等,正方体的所有棱长度都相等。
4.列表比较一下:(课件第10、11张)
5.长方体和正方体的关系(课件第12张)
师:长方体和正方体有什么关系?
生1:正方形是特殊的长方形,正方体也是特殊的长方体。
师:特殊在哪里?
生2:正方体可以看做是长、宽、高都相等的长方体。
师:你会用集合图来表示它们的关系吗?
6.小结:(出示课件第13张)
(1)正方体的6个面都是完全相同的正方形。
(2)正方体的12条棱都相等。
(3)正方体是长、宽、高都相等的长方体。
【设计意图】
对所学的知识加以总结,加深学生印象,使学生能查漏补缺,更好地掌握本节课所学的知识点。
7.做一做:(课件第14张)
小组活动:小组同学配合,用棱长1cm的小正方体搭一搭。并思考:
(1)搭一个稍大一些的正方体,至少需要多少个小正方体?
(2)用12个小正方体搭一个长方体,可以用几种不同的摆法?搭出的长方体的长、宽、高分别是多少?
(3)搭一个四个面都是正方形的长方体,你发现了什么?
8.答案揭晓:(课件第15张)
(1)搭一个稍大一些的正方体,至少需要8个小正方体。如下图:
(2)用12个小正方体搭成一个长方体,可以有几种不同的摆法?搭出的长方体的长、宽、高分别是多少?(课件第16张)
第一种摆法:
这个长方体的长是12cm,宽是1cm,高是1cm。
第二种摆法:(课件第17张)
这个长方体的长是6cm,宽是2cm,高是1cm。
第三种摆法:(课件第18张)
这个长方体的长是4cm,宽是1cm,高是3cm。
【设计意图】
通过让学生动手操作,用小正方体摆成不同的长方体,可以使学生对长方体和正方体的特点理解的更为透彻,为下一步学习长方体和正方体的表面积和体积做好准备,同时也培养了学生的动手能力。
(3)搭一个四面都是正方形的长方体,你发现了什么?(课件第19张)
搭一个四面都是正方形的长方体,搭成的长方体其实就是一个正方体。
(三)课堂练习
谈话:同学们,你们学得怎么样了?我们一起到智慧乐园挑战一下自己吧!有没有信心呢?
1.这个正方体的棱长是多少?有几个面的形状完全相同?(课件第20张)
这个正方体的棱长是5cm。它有6个面的形状完全相同。
【设计意图】
本题的设计能让学生更好地理解正方体的特点,知道正方体的棱长都相等,6个面也是完全相同的。
2.这个正方体的棱长之和是72分米,它的棱长是多少分米?(课件第21张)
正方体12条棱相等,棱长和是72dm,可以求出一条棱的长度。
72÷12=6(分米)
答:它的棱长是6分米。
(四)拓展提高。(课件第22、23、24张)
用铁丝做一个底面周长是56厘米的正方体框架,需要铁丝多少厘米?
(1)小组讨论:先求什么?再求什么?说说你的思考过程。
(2)汇报交流:
正方体的12条棱都相等,可以先求一条棱的长度,再求12条棱的.总长度。
56÷4×12
=14×12
=168(厘米)
答:需要铁丝168厘米。
(3)底面周长就是4条棱长是总和,求12条棱长的总和,就是56厘米的3倍。
56×(12÷4)
=56×3
=168(厘米)
答:需要铁丝168厘米。
(五)课堂总结
师:通过学习,你有什么收获?
生交流:
1.正方体有6个面、12条棱、8个顶点。
2.正方体的6个面是正方形,6个面是完全相同的。
3.正方体的12条棱都相等。
4.正方体长、宽、高都相等的长方体。
(六)板书设计
正方体
1.正方体有6个面、12条棱、8个顶点。
2.正方体的6个面是正方形,6个面是完全相同的。
3.正方体的12条棱都相等。
4.正方体长、宽、高都相等的长方体。
【教学反思】
1、遵循学生认知规律,正确把握教学起点
充分尊重学生的已有知识,遵循学生的认知规律、学习经验、学习兴趣,恰当地把握教学起点。例如本课在导入时,以尊重学生原有知识经验为基础,先回忆有关长方体的特点的有关知识,再开门见山设计了辨认生活中那些物体是正方体,然后直接转入正方体特征研究,避免了教学拖沓、使学生迅速进入学习的重点。
2、注重动手操作,让学生积累空间观念。
正方体的认识在几何形体知识属于直观几何阶段,教学时我注重引导学生动手操作实践,让学生在看一看、摸一摸、认一认等实际操作中,使自己的多种感官参与活动,丰富自己的感性认识,掌握几何形体的特征,不断积累空间观念。
3、教会知识,更要教会获取知识的方法。
本节课的题目是正方体的认识,让学生用类比法参照长方体特征研究过程研究正方体的特征,最后进行两者之间的异同比较完成新知识的学习。这种过程的设计既留给了学生足够的自主探究的空间,同时又教会了一种知识探究的方法。学生学会了知识,也提高了能力。
数学五年级下教案篇3
教学目标
1、体验事件发生的等可能性以及游戏规则的公平性及它们的关系,会求简单事件发生的可能性。
2、能根据指定的要求,设计公平的游戏方案。能对简单事件的可能性做出预测。
3、培养概率素养,增强对随机思想的理解。培养公正、公平的意识,促进正直人格的形成。
4、在游戏中体验学习数学的乐趣,提高学生学习数学的积极性。
学情分析
这是一节有趣的活动课,学生非常感兴趣,在游戏中探索可能性。
重点难点
教学重点:
体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的可能性。
教学难点:
用分数表示可能性的大小。对随机思想的理解。
教学过程
一.导入引出课题:
1.师:这些小朋友在干什么?(踢足球)如果要开始一场足球赛大家觉得用抛硬币的方法决定谁先开球,这样公平吗?为什么?(课件)
2.揭题:硬币抛出后可能是那些面?(正反面),所以这是一个不确定的.事件,今天我们就进一步研究不确定事件发生的可能性。(板书:可能性)
二.用分数表示简单事件发生的可能性
1.猜测:
(1)既然认为是公平的,那么大家想一想正面朝上的可能性是多少?你是怎样想的?
(2)那掷出反面的可能性是多少?为什么?你能用一个数来表示吗?
数学五年级下教案篇4
教学目标知识与技能
经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。过程与方法
在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,进一步培养观察能力和发现规律的能力。
情感态度与价值观
进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重点
结合实际情境认识成正比例的量的特点,加深对正比例意义的理解。
教学难点掌握成正比例量的变化规律及其特征,学会跟据正比例的意义判断两种相关联的量是否成正比例的量。
教法与学法教法情景激趣、引导观察、启发分析、发现总结。学法观察思考、小组合作、交流、总结汇报。
教学过程
集体备课教学调整
一、复习铺垫激情促思
1、说出下列每组数量之间的关系。(学生口答,相互补充)
(1)速度时间路程
(2)单价数量总价
2、师:这些是我们已经学过的一些常见数量关系,每组数
量之间是有联系的,存在着相依关系。当其中一种量变化时,另
一种量也随着变化,而且这种变化是有一定的规律的,你想知道
其中的奥秘吗?今天,我们就来研究和认识这种变化规律。
二、初步感知探究规律
1、出示例1的表格。说说表中列出了哪两种量。
(1)引导学生观察表中的数据,说一说这两种量的数值分别是
怎样变化的。(先观察思考,再小组讨论、交流。)
初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)引导学生观察表中数据,寻找两种量的变化规律。启发学生从“变化”中国寻找“不变”。(学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。)
根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。
数学五年级下教案篇5
教学目标
1、知识与技能
让学生在条形统计图的基础上认识折线统计图,进一步体会统计在现实生活中的作用,体会数学与生活实际的密切关系。
2、过程与方法
使学生认识折线统计图的特点,会看折线统计图,并能根据数据进行合理分析,培养学生的合作意识和实践能力。
3、情感态度与价值观
能从统计图中发现数学问题、解决问题,并能体会统计知识在生活中的意义和作用。
教学过程
(一)情境引入
师:同学们都喜欢机器人吗?同学们可以自己制作,锻炼动手能力。我们了解到xx-xx年中国青少年机器人参赛队伍的参赛队伍支数情况,于是做了一份统计图。出示条形统计图。你能从中获得什么信息?回忆条形统计图的`特点。
(二)探究新知
1、为了更明显的看出各年参观科技馆的人数增减情况,我们来学习一种新的统计图。
出示折线统计图(板书标题:折线统计图)
说一说它的横轴、纵轴分别表示什么?
统计图上的各点又表示什么意思?
2、分析折线统计图
小组讨论:
(1)中国青少年机器人参赛队伍的数量有什么变化?你有什么感想?
(2)折线统计图有什么特点?
小组交流汇报讨论结果。
师带领学生从点和线两方面分析总结折线统计图的特点。
师问:在折线统计图中我们是用什么来表示数据?(板书:点表示数量的多少)
我们明明用点来表示数量的多少,而它却叫做折线统计图你,说明这些线段中肯定藏着一些奥秘。
师问:观察一下折线统计图里面的各条线段,它们有什么作用?
(板书:线表示数量的增减变化)
3、中国已经进入老龄化社会,尤其是上海,早在20世纪70年代末就进入了老龄化。出生人口数和死亡人口数是重要的影响因素。下面是一个小组调查的xx-xx年上海出生人口和死亡人口数。
小组讨论:如果要看出生人口数和死亡人口数变化情况,该怎么办?
分别出示上海出生人口数和死亡人口数统计图。
4、提问:请比较出生人口数和死亡人口数变化情况。怎样才能更方便地比较呢?
(1)出示复式折线统计图,指出复式折线统计图的标题和图例在制图中一定要有。
(2)复式折线统计图与单式折线统计图与什么不同?
复式折现统计图可以更方便的分析两个数量增减变化情况。
5、根据复式折线统计图回答问题
(1)观察复式折线统计图,你说说上海出生人口数、死亡人口数的变化趋势吗?
(2)每年的出生人口数和死亡人口数之间存在什么关系?
(3)结合全国xx—xx年出生人口数和死亡人口数统计表,你能发现什么共同的规律吗?(如下表)
略
三、知识巩固
1、甲乙两地月平均气温见如下统计图。
(1)根据统计图,你能判断一年气温变化的趋势吗?
1、某月份气温最低,从某月份气温上升,5~某月份气温最高,从某月份开始,气温下降。
(2)有一种树莓的生长期为5个月,最适宜的生长温度为7~10之间,这种植物适合在哪个地方种植?
这种植物在甲地种植比较合适。
2、陈明每年生日时都测量体重。下图是他8~14岁之间测量的体重与全国同龄男生标准体重对比的统计图。
(1)陈明的体重在哪一年比上一年增长的幅度最大?
14岁比13岁增长的幅度最大。
(2)说一说陈明的体重与标准体重比变化的情况。
四、课堂小结
重点:了解折线统计图的特点,会看折线统计图,能根据折线统计图对数据进行简单的分析。
难点:弄清条形统计图与折线统计图的区别。
数学五年级下教案篇6
一、教学目标
1、能直接在方格图上,数出相关图形的面积。
2、能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。
3、在解决问题的过程中,体会策略、方法的多样性。
二、重点难点
整点:指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。
难点:学生能灵活运用。
三、教学过程
(一)直接揭示课题
1、今天我们来学习《地毯上的图形面积》。请同学们把书p18页,请同学们认真观察这幅地毯图,看看它有什么特征。
2、小组讨论。
3、汇报:对称图形、边长为14米的正方形、图案由蓝色组成。
4、看这副地毯图,请你提出一些数学问题。
(二)自主探索、学习新知
1、如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?
2、学生独立解决问题。要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。
3、小组内交流、讨论。
4、全班汇报。
a)直接一个一个地数,为了不重复,在图上编号。(数方格法)
b)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4。(化整为零法)
c)用总正方形面积减去白色部分的面积。(大减小法)
d)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)
5、师总结求蓝色部分面积的方法。
(三)巩固练习
1、第一题。
(1)学生独立思考,求图1的面积。
(2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。
2、第二题。独立解决后班内反馈。
3、第三题。
(1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。
(2)学生观察结果,说发现。
第(1)题的4个图形面积分别为1、2、3、4的平方数。
第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形面积的一半。
(四)总结
对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。
四、板书设计
地毯上的图形面积
一个一个地数(数方格法)
平均分成4份,再乘4。(化整为零法)
总面积减去白色面积。(大减小法)
五、教学反思
本节课从设计上讲,我充分考虑到学生是主体的新理念,采用小组合作、探索交流的教学形式,在大胆猜测、积极尝试中寻找解决问题的策略,对于不同情况优化选择。
数学五年级下教案篇7
教学目标:
(一)知识目标
1、理解小数除法的意义。
2、掌握小数除以整数(恰好除尽)的计算方法。
(二)能力目标:能够在情境中发现问题、提出问题,在观察比较的过程中感受小数除法的异同,能够与他人合作交流解决问题。
(三)情感目标:经历探索小数除以整数(恰好除尽)计算方法的过程,体验获得成功的乐趣。
教学重点:
小数除法的意义,小数除以整数(恰好除尽)的计算方法。
教学难点:
商的小数点与被除数的小数点对齐。
教学方法:
探究、交流、引导。
教学过程:
一、导入新课,创设情境
1、淘气打算去买牛奶,你从图上得到了什么数学信息?
2、根据图上的数学信息,你能提出哪些数学问题?
3、教师根据学生提出的问题,引导学生列出算式: ÷5 ÷6
引导学生观察这两个算式与以往我们学过的除法算式有什么不同。(被除数都是小数,除数都是整数。)
师:我们今天就来研究小数除以整数的计算方法,看看淘气到底应该买哪个商店的.牛奶。
二、探索新知,解决问题
1、师:两个商店牛奶的单价分别是多少呢?我们先算一算甲商店的牛奶单价。
2、学生交流讨论,教师巡视指导。
3、教师引导学生比较汇总的各种方法,认为哪个方法比较简便实用?
引导出“商的小数点与被除数的小数点对齐”。
4、理解算理。
5、引导归纳总结,明确小数除法的计算方法:按照整数除法的计算方法; 商的小数点与被除数的小数点对齐。
6、学生尝试计算,教师巡视指导。
三、巩固练习,拓展延伸
1、完成教材第3页练一练第1题。
集体订正。
2、我是小小神算手。
÷4 ÷42 ÷31
引导学生通过对比发现小数除以两位数与除以一位数的,都要注意商的小数点要与被除数的小数点对齐。
3、完成教材第3页练一练第4题。
教师巡视指导。
四、全课总结
今天你有什么收获呢?
板书
甲商店牛奶每袋多少钱? 乙甲商店牛奶每袋多少钱?
÷5=(元) ÷6=(元)
数学五年级下教案篇8
一、教学内容
课本p38~40。
二、教学目标
1.知识与技能
使学生理解体积的意义;认识常用的体积单位:立方米、立方分米、立方厘米。
2.过程与方法
让学生经历探索体积和体积单位的过程,发展学生的空间观察能力和培养学生的推理能力。
3.情感、态度与价值观
使学生形成空间观念,体验所学知识与现实生活的联系,使其能运用所学知识解决生活中简单的问题,从中获得价值体验。
三、重点难点
1.教学重点
体积概念的建立以及对体积计量方法的理解。
2.教学难点
感知物体的体积以及建立体积单位的概念。
四、教学用具
1立方米、1立方分米、1立方厘米的模型;水杯,水,沙子,大小石块(用线系好),木块等;10个1立方厘米的正方体。
五、教学设计
(一)铺垫选择研究方向
1.引入:在装有半杯蓝色水的玻璃杯中(先在水面处做个记号)放入一块石块。
2.观察思考。
(视频脚本三:长方体和正方体4.土豆放入水杯的动画片。)
(1)水面的位置发生了什么变化?杯中的水为什么会上升?
(2)杯中的水为什么会上升,这就是我们今天要研究的内容。
(二)发现并认识体积
1.想一想:是不是所有的物体都占有一定的空间?用桌上提供的物品验证。有:木块、沙子、火柴盒、工具箱、石块、玻璃球……
2.教师巡视与学生一起探讨。
3.提问汇报。
(1)你们是怎样进行实验的?
(2)你们在实验过程中观察到了什么现象?
(3)学生动手操作。
(4)学生回答。
生:我们拿出自带的装满细沙的杯子,先把细沙倒在纸上,把一块木块放入杯中,然后再把细沙倒入杯中,沙子不能全部倒入杯中,有剩余部分,因为木块占有一定空间。
4.表象再现。
(1)闭眼回忆刚才验证物体的样子。
(2)学生闭眼想象。
5.抽象体积的概念。
(1)物体所占的空间一样吗?
(2)学生回答。
生:我们先把小石块放入杯中,然后在水面上升处作个记号。取出石块,再放入大一些的石块,发现水面比原来的水面高了。
(3)为什么上升的水面会比原来的高?
(4)学生回答。
生:因为大石块占的空间大,所以上升的水面比原来的高。也就是说,物体的大小不一样,所占空间的大小也不一样。
6.看来物体所占空间有大有小,物体所占空间的大小就是物体的体积。
(1)什么叫物体的体积?
(2)学生回答:物体所占空间的大小叫做物体的体积。
7.看书质疑。
(三)自我探索体积单位
1.要知道一个物体的体积有多大,或者一个物体的体积比另一个物体的体积大多少或少多少,该怎么办?这就需要计量,计量体积要用体积单位。【 】
2.猜想。
你听说过哪些体积单位?
(1)常用的体积单位有哪些?
(2)汇报:将你们学习到的说给大家听听。
(3)学生回答。
棱长1厘米的正方体,体积是1立方厘米;
棱长1分米的正方体,体积是1立方分米;
棱长1米的正方体,体积是1立方米。
(视频脚本三:第三单元长方体和正方体5.视频“1立方米的空间有多大”的演示)
3.估量体积单位。
(1)1立方厘米的空间有多大?比画比画。
(2)什么物体的体积大约接近1立方厘米?
(3)1立方分米有多大?比画比画。
(4)什么物体的体积接近1立方分米?
(5)1立方米呢?
(6)1立方米有多大?利用一些工具体验大小,你们钻进去试一试。(准备3个米尺)
4.填入适当的单位。
(1)橡皮的体积大约是5()。
(2)桌子的体积大约是240()。
5.质疑。
(四)体积的初步计量
1.教师演示(学生跟着摆)。
(1)出示2个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?
(2)出示6个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?
(3)(改变长方体的摆法)这是长方体吗?它的体积是多少?为什么仍是6立方厘米?
(4)(再改变形状)形状变了,体积有没有变?为什么?
(5)为什么不管摆什么形状,体积都是6立方厘米?
2.学具操作。
(1)你们每人桌上都放有10个1立方厘米的正方体,现在请你们摆一个体积是9立方厘米的长方体,想想怎么摆?
(2)为什么所摆的长方体的体积都是9立方厘米?
3.归纳概括。
(四人一组讨论)根据刚才所摆的图形,你怎么知道这些物体的体积是多少的?
(五)巩固练习
1.填空
常用的体积单位有()、()、()。
常用的面积单位有()、()、()。
常用的长度单位有()、()、()。
棱长()的正方体的体积是1立方厘米。
棱长()的正方体的体积是1立方分米。
棱长()的正方体的体积是1立方米。
2.在括号里填上适当的单位。
(1)一根粉笔的体积大约是10()。
(2)讲台桌的体积大约是0.4()。
(3)一本《新华字典》的体积大约是0.35()。
(4)一张信纸的面积大约是5()。
(5)一块城砖的体积大约是3()。
3.拼一拼,说说是由几个1立方厘米的正方体组成的?
(六)全课总结
通过这节课你有哪些心得和体会?你还有哪些问题?
(七)板书设计
体积和体积单位
意义:物体所占空间的大小叫做物体的体积。
单位:立方厘米、立方分米、立方米。
计量:要看这个物体含有多少个体积单位。
数学五年级下教案通用8篇相关文章:
★ 5下数学教案6篇